Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Nat Med ; 30(3): 670-674, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38321219

ABSTRACT

Dengue is a global epidemic causing over 100 million cases annually. The clinical symptoms range from mild fever to severe hemorrhage and shock, including some fatalities. The current paradigm is that these severe dengue cases occur mostly during secondary infections due to antibody-dependent enhancement after infection with a different dengue virus serotype. India has the highest dengue burden worldwide, but little is known about disease severity and its association with primary and secondary dengue infections. To address this issue, we examined 619 children with febrile dengue-confirmed infection from three hospitals in different regions of India. We classified primary and secondary infections based on IgM:IgG ratios using a dengue-specific enzyme-linked immunosorbent assay according to the World Health Organization guidelines. We found that primary dengue infections accounted for more than half of total clinical cases (344 of 619), severe dengue cases (112 of 202) and fatalities (5 of 7). Consistent with the classification based on binding antibody data, dengue neutralizing antibody titers were also significantly lower in primary infections compared to secondary infections (P ≤ 0.0001). Our findings question the currently widely held belief that severe dengue is associated predominantly with secondary infections and emphasizes the importance of developing vaccines or treatments to protect dengue-naive populations.


Subject(s)
Coinfection , Dengue Virus , Dengue , Severe Dengue , Humans , Child , Dengue/epidemiology , Severe Dengue/epidemiology , Antibodies, Viral , Coinfection/epidemiology , Fever
2.
J Virol ; 97(11): e0074623, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37855600

ABSTRACT

IMPORTANCE: CD8 T cells play a crucial role in protecting against intracellular pathogens such as viruses by eliminating infected cells and releasing anti-viral cytokines such as interferon gamma (IFNγ). Consequently, there is significant interest in comprehensively characterizing CD8 T cell responses in acute dengue febrile patients. Previous studies, including our own, have demonstrated that a discrete population of CD8 T cells with HLADR+ CD38+ phenotype undergoes massive expansion during the acute febrile phase of natural dengue virus infection. Although about a third of these massively expanding HLADR+ CD38+ CD8 T cells were also CD69high when examined ex vivo, only a small fraction of them produced IFNγ upon in vitro peptide stimulation. Therefore, to better understand such functional diversity of CD8 T cells responding to dengue virus infection, it is important to know the cytokines/chemokines expressed by these peptide-stimulated HLADR+CD38+ CD8 T cells and the transcriptional profiles that distinguish the CD69+IFNγ+, CD69+IFNγ-, and CD69-IFNγ- subsets.


Subject(s)
CD8-Positive T-Lymphocytes , Dengue , Humans , CD8-Positive T-Lymphocytes/immunology , Cytokines , Dengue/genetics , Dengue/immunology , Dengue/pathology , Interferon-gamma/genetics , Fever/virology , T-Lymphocyte Subsets/immunology
3.
Cell Rep ; 42(9): 113150, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37708028

ABSTRACT

The pairing of antibody genes IGHV2-5/IGLV2-14 is established as a public immune response that potently cross-neutralizes SARS-CoV-2 variants, including Omicron, by targeting class-3/RBD-5 epitopes in the receptor binding domain (RBD). LY-CoV1404 (bebtelovimab) exemplifies this, displaying exceptional potency against Omicron sub-variants up to BA.5. Here, we report a human antibody, 002-S21B10, encoded by the public clonotype IGHV2-5/IGLV2-14. While 002-S21B10 neutralized key SARS-CoV-2 variants, it did not neutralize Omicron, despite sharing >92% sequence similarity with LY-CoV1404. The structure of 002-S21B10 in complex with spike trimer plus structural and sequence comparisons with LY-CoV1404 and other IGHV2-5/IGLV2-14 antibodies revealed significant variations in light-chain orientation, paratope residues, and epitope-paratope interactions that enable some antibodies to neutralize Omicron but not others. Confirming this, replacing the light chain of 002-S21B10 with the light chain of LY-CoV1404 restored 002-S21B10's binding to Omicron. Understanding such Omicron evasion from public response is vital for guiding therapeutics and vaccine design.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Antibodies, Viral , Antibodies, Neutralizing , Epitopes
4.
Structure ; 31(7): 801-811.e5, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37167972

ABSTRACT

Understanding the molecular features of neutralizing epitopes is important for developing vaccines/therapeutics against emerging SARS-CoV-2 variants. We describe three monoclonal antibodies (mAbs) generated from COVID-19 recovered individuals during the first wave of the pandemic in India. These mAbs had publicly shared near germline gene usage and potently neutralized Alpha and Delta, poorly neutralized Beta, and failed to neutralize Omicron BA.1 SARS-CoV-2 variants. Structural analysis of these mAbs in complex with trimeric spike protein showed that all three mAbs bivalently bind spike with two mAbs targeting class 1 and one targeting a class 4 receptor binding domain epitope. The immunogenetic makeup, structure, and function of these mAbs revealed specific molecular interactions associated with the potent multi-variant binding/neutralization efficacy. This knowledge shows how mutational combinations can affect the binding or neutralization of an antibody, which in turn relates to the efficacy of immune responses to emerging SARS-CoV-2 escape variants.


Subject(s)
Antibodies, Neutralizing , COVID-19 , Humans , SARS-CoV-2/genetics , Antibodies, Monoclonal , Epitopes , Neutralization Tests
5.
bioRxiv ; 2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36324804

ABSTRACT

A detailed understanding of the molecular features of the neutralizing epitopes developed by viral escape mutants is important for predicting and developing vaccines or therapeutic antibodies against continuously emerging SARS-CoV-2 variants. Here, we report three human monoclonal antibodies (mAbs) generated from COVID-19 recovered individuals during first wave of pandemic in India. These mAbs had publicly shared near germline gene usage and potently neutralized Alpha and Delta, but poorly neutralized Beta and completely failed to neutralize Omicron BA.1 SARS-CoV-2 variants. Structural analysis of these three mAbs in complex with trimeric spike protein showed that all three mAbs are involved in bivalent spike binding with two mAbs targeting class-1 and one targeting class-4 Receptor Binding Domain (RBD) epitope. Comparison of immunogenetic makeup, structure, and function of these three mAbs with our recently reported class-3 RBD binding mAb that potently neutralized all SARS-CoV-2 variants revealed precise antibody footprint, specific molecular interactions associated with the most potent multi-variant binding / neutralization efficacy. This knowledge has timely significance for understanding how a combination of certain mutations affect the binding or neutralization of an antibody and thus have implications for predicting structural features of emerging SARS-CoV-2 escape variants and to develop vaccines or therapeutic antibodies against these.

6.
Sci Adv ; 8(40): eadd2032, 2022 10 07.
Article in English | MEDLINE | ID: mdl-36197988

ABSTRACT

In this study, by characterizing several human monoclonal antibodies (mAbs) isolated from single B cells of the COVID-19-recovered individuals in India who experienced ancestral Wuhan strain (WA.1) of SARS-CoV-2 during early stages of the pandemic, we found a receptor binding domain (RBD)-specific mAb 002-S21F2 that has rare gene usage and potently neutralized live viral isolates of SARS-CoV-2 variants including Alpha, Beta, Gamma, Delta, and Omicron sublineages (BA.1, BA.2, BA.2.12.1, BA.4, and BA.5) with IC50 ranging from 0.02 to 0.13 µg/ml. Structural studies of 002-S21F2 in complex with spike trimers of Omicron and WA.1 showed that it targets a conformationally conserved epitope on the outer face of RBD (class 3 surface) outside the ACE2-binding motif, thereby providing a mechanistic insights for its broad neutralization activity. The discovery of 002-S21F2 and the broadly neutralizing epitope it targets have timely implications for developing a broad range of therapeutic and vaccine interventions against SARS-CoV-2 variants including Omicron sublineages.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Antibodies, Monoclonal/chemistry , Antibodies, Viral , Epitopes , Humans , Neutralization Tests , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus
7.
iScience ; 25(6): 104384, 2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35620424

ABSTRACT

Monocytes are known to play a critical role in dengue pathophysiology. However, which monocyte subset expresses what inflammatory mediator(s) and what transcriptional features distinguish each of the monocyte subset in vivo remain poorly understood. In this study we provide a detailed transcriptional analysis of the three human monocyte subsets in healthy children and in children with dengue febrile illness. Notably, we found that the CD14+ CD16high intermediate monocyte subset from dengue patients highly upregulated key genes involved in mediating inflammation, endothelial dysfunction, vascular permeability, tissue extravasation, and clot prevention compared to healthy children. The CD14+CD16low classical monocytes shared some of these features. These two subsets increased massively in patients with severe dengue. By contrast, the CD14-CD16high nonclassical monocyte subset upregulated key genes involved in vasoconstriction, endothelial barrier stability, and are involved in endothelial patrolling while showing a significant decline from circulation. These findings improve our understanding of monocyte responses in dengue.

8.
Vaccines (Basel) ; 9(11)2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34835270

ABSTRACT

Dengue is an important public health problem worldwide, with India contributing nearly a third of global dengue disease burden. The measurement of neutralizing antibody responses is critical for understanding dengue pathophysiology, vaccine development and evaluation. Historically, dengue virus neutralization titers were measured using plaque reduction neutralization tests (PRNTs), which were later adapted to focus reduction neutralization tests (FRNTs). Given the slow and laborious nature of both these assays, there has been interest in adapting a high-throughput flow cytometry based neutralization assay. However, flow cytometry based assays typically underestimate neutralization titers, and in situations where the titers are low they can even fail to detect neutralization activity. In this study, by evaluating graded numbers of input Vero cell numbers and viral inoculum, we optimized the flow cytometry based neutralization assay in such a way that it is sensitive and scores titers that are in concordance with focus reduction neutralization tests for each of the four dengue virus serotypes (p < 0.0001). Given that dengue is a global public health concern, and several research groups are making efforts to understand its pathophysiology and accelerate vaccine development and evaluation both in India and worldwide, our findings have timely significance for facilitating these efforts.

9.
J Virol ; 95(23): e0061021, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34523972

ABSTRACT

Plasmablasts represent a specialized class of antibody-secreting effector B cells that transiently appear in blood circulation following infection or vaccination. The expansion of these cells generally tends to be massive in patients with systemic infections such as dengue or Ebola that cause hemorrhagic fever. To gain a detailed understanding of human plasmablast responses beyond antibody expression, here, we performed immunophenotyping and RNA sequencing (RNA-seq) analysis of the plasmablasts from dengue febrile children in India. We found that plasmablasts expressed several adhesion molecules and chemokines or chemokine receptors that are involved in endothelial interactions or homing to inflamed tissues, including skin, mucosa, and intestine, and upregulated the expression of several cytokine genes that are involved in leukocyte extravasation and angiogenesis. These plasmablasts also upregulated the expression of receptors for several B-cell prosurvival cytokines that are known to be induced robustly in systemic viral infections such as dengue, some of which generally tend to be relatively higher in patients manifesting hemorrhage and/or shock than in patients with mild febrile infection. These findings improve our understanding of human plasmablast responses during the acute febrile phase of systemic dengue infection. IMPORTANCE Dengue is globally spreading, with over 100 million clinical cases annually, with symptoms ranging from mild self-limiting febrile illness to more severe and sometimes life-threatening dengue hemorrhagic fever or shock, especially among children. The pathophysiology of dengue is complex and remains poorly understood despite many advances indicating a key role for antibody-dependent enhancement of infection. While serum antibodies have been extensively studied, the characteristics of the early cellular factories responsible for antibody production, i.e., plasmablasts, are only beginning to emerge. This study provides a comprehensive understanding of the transcriptional profiles of human plasmablasts from dengue patients.


Subject(s)
Dengue/immunology , Immunophenotyping/methods , Plasma Cells/immunology , Antibodies, Viral/immunology , Antibody-Dependent Enhancement , B-Lymphocyte Subsets/immunology , B-Lymphocytes/immunology , Cytokines/genetics , Dengue Virus/immunology , Humans , India , Plasma Cells/metabolism
10.
Front Cell Infect Microbiol ; 11: 574067, 2021.
Article in English | MEDLINE | ID: mdl-33816326

ABSTRACT

Dengue is emerging as one of the most prevalent mosquito-borne viral diseases of humans. The 11kb RNA genome of the dengue virus encodes three structural proteins (envelope, pre-membrane, capsid) and seven non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5), all of which are translated as a single polyprotein that is subsequently cleaved by viral and host cellular proteases at specific sites. Non-structural protein 5 (NS5) is the largest of the non-structural proteins, functioning as both an RNA-dependent RNA polymerase (RdRp) that replicates the viral RNA and an RNA methyltransferase enzyme (MTase) that protects the viral genome by RNA capping, facilitating polyprotein translation. Within the human host, NS5 interacts with several proteins such as those in the JAK-STAT pathway, thereby interfering with anti-viral interferon signalling. This mini-review presents annotated, consolidated lists of known and potential NS5 interactors in the human host as determined by experimental and computational approaches respectively. The most significant protein interactors and the biological pathways they participate in are also highlighted and their implications discussed, along with the specific serotype of dengue virus as appropriate. This information can potentially stimulate and inform further research efforts towards providing an integrative understanding of the mechanisms by which NS5 manipulates the human-virus interface in general and the innate and adaptive immune responses in particular.


Subject(s)
Dengue Virus , Animals , Dengue Virus/genetics , Host-Pathogen Interactions , Humans , RNA, Viral , RNA-Dependent RNA Polymerase , Viral Nonstructural Proteins/genetics
11.
Arch Virol ; 166(7): 1913-1920, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33907861

ABSTRACT

Chikungunya virus (CHIKV) infection is endemic in many different countries. CHIKV outbreaks are emerging in new areas and re-emerging in previously exposed geographical regions, thus making it a significant public health concern. CHIKV infections are often clinically inapparent, especially in children, which poses a challenge to testing and evaluating any vaccine. During CHIKV infection, CHIKV-specific antibodies are produced, and some of these antibodies can neutralize viruses released from infected cells before they can enter uninfected cells. In this study, we evaluated IgG binding and neutralizing antibody responses in paired serum samples from CHIKV-infected children and those with other febrile illness, using a recombinant truncated E2 protein and whole CHIKV particles as test antigens. Antibody detection using the truncated E2 protein showed a significant overlap between CHIKV-infected subjects and those with other febrile illnesses. This overlap was greater when binding antibody titers were determined using fixed CHIKV particles as the test antigen. Acute- and convalescent-phase sera collected from children after CHIKV infection showed significant differences in their neutralizing capacity. The neutralizing and binding antibody response showed a significant positive correlation. We detected IgG antibodies in most cases during the acute phase of infection. This was observed at two different geographical locations, one of which is not considered highly endemic. Conventional wisdom would suggest this to be a marker of re-infection (secondary infection). However, dissenting opinions have been voiced in other viral diseases (such as Ebola) where studies have detected IgG in acute illness. In the absence of any significant body of work documenting secondary CHIKV infections, we believe further work is needed to understand the early IgG response that we observed.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Chikungunya Fever/immunology , Chikungunya virus/immunology , Immunoglobulin G/immunology , Chikungunya Fever/virology , Child , Female , Humans , India , Male , Viral Envelope Proteins/immunology
12.
Virology ; 558: 13-21, 2021 06.
Article in English | MEDLINE | ID: mdl-33706207

ABSTRACT

India is one of the most affected countries by COVID-19 pandemic; but little is understood regarding immune responses to SARS-CoV-2 in this region. Herein we examined SARS-CoV-2 neutralizing antibodies, IgG, IgM, IgA and memory B cells in COVID-19 recovered individual from India. While a vast majority of COVID-19 recovered individuals showed SARS-CoV-2 RBD-specific IgG, IgA and IgM antibodies (38/42, 90.47%; 21/42, 50%; 33/42, 78.57% respectively), only half of them had appreciable neutralizing antibody titers. RBD-specific IgG, but not IgA or IgM titers, correlated with neutralizing antibody titers and RBD-specific memory B cell frequencies. These findings have timely significance for identifying potential donors for plasma therapy using RBD-specific IgG assays as surrogate measurement for neutralizing antibodies in India. Further, this study provides useful information needed for designing large-scale studies towards understanding of inter-individual variation in immune memory to SARS CoV-2 natural infection for future vaccine evaluation and implementation efforts.


Subject(s)
Antibodies, Neutralizing/analysis , Antibodies, Viral/analysis , B-Lymphocytes , COVID-19/immunology , Spike Glycoprotein, Coronavirus/immunology , Adolescent , Adult , Aged , B-Lymphocytes/cytology , B-Lymphocytes/immunology , COVID-19/epidemiology , Humans , Immunity, Humoral , Immunoglobulin Isotypes/analysis , India/epidemiology , Male , Middle Aged , Pandemics , Young Adult
13.
Microbiol Immunol ; 65(8): 290-301, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33347650

ABSTRACT

Chikungunya virus (CHIKV), an arthropod-borne Alphavirus is responsible for chikungunya disease. Arthralgia and arthritis are the major symptom. Some patients recover early while others for a very long time. This study provides, epidemiology and molecular characterization of three whole-genome sequences of CHIKV and assessed phylogenetic analysis, physiological properties, antigenicity, and B-cell epitope prediction by in silico. We report the clinical epidemiology of 325 suspected patients. Of these, 118 (36.30%) were confirmed CHIKV positive by either PCR or ELISA. Clinical analysis showed joint pain, joint swelling and headache were frequent and significant features. Phylogenie analysis showed the currently circulating strain is in close clustring to Africa, Uganda, and Singapore CHIKV strains. Molecular characterization by WGS was done. Thirty eight amino acid changes in the nonstructural proteins were found with respect to the S27 (ECSA) strain. Of these five located in nsP2. Similarly, 34 amino acid changes in structural proteins were observed. The major change was notice; in E3 protein hydropathicity -0.281 to -0.362, in E2 isoelectric point (pI) 8.24 to 8.37, instability index 66.08 to 71.062, aliphatic index varied from 74.69 to 68.59 and E3 75.79 to 70.05. In nsP1 protein pI varies from 6.62 to 8.04, while no other change was observed in structural and nonstructural protein. The linear B-cell epitopes, position, and number varied with the mutation. The molecular characterizations of WGS demonstrate the observation of protein, antigenicity with respect to the mutation.


Subject(s)
Chikungunya Fever , Chikungunya virus , Chikungunya Fever/epidemiology , Chikungunya virus/genetics , Epitopes, B-Lymphocyte , Humans , India/epidemiology , Mutation , Phylogeny
14.
JCI Insight ; 5(7)2020 04 09.
Article in English | MEDLINE | ID: mdl-32155134

ABSTRACT

Chikungunya virus (CHIKV) infection causes acute febrile illness in humans, and some of these individuals develop a debilitating chronic arthritis that can persist for months to years for reasons that remain poorly understood. In this study from India, we characterized antibody response patterns in febrile chikungunya patients and further assessed the association of these initial febrile-phase antibody response patterns with protection versus progression to developing chronic arthritis. We found 5 distinct patterns of the antibody responses in the febrile phase: no CHIKV binding or neutralizing (NT) antibodies but PCR positive, IgM alone with no NT activity, IgM alone with NT activity, IgM and IgG without NT activity, and IgM and IgG with NT activity. A 20-month follow-up showed that appearance of NT activity regardless of antibody isotype or appearance of IgG regardless of NT activity during the initial febrile phase was associated with a robust protection against developing chronic arthritis in the future. These findings, while providing potentially novel insights on correlates of protective immunity against chikungunya-induced chronic arthritis, suggest that qualitative differences in the antibody response patterns that have evolved during the febrile phase can serve as biomarkers that allow prediction of protection or progression to chronic arthritis in the future.


Subject(s)
Antibodies, Viral/immunology , Antibody Formation , Arthritis/prevention & control , Chikungunya Fever/immunology , Chikungunya virus/immunology , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Antibodies, Viral/blood , Arthritis/blood , Arthritis/immunology , Chikungunya Fever/blood , Chikungunya virus/metabolism , Chronic Disease , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood
15.
Int J Infect Dis ; 84S: S57-S63, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30658170

ABSTRACT

BACKGROUND: The Indian population is facing highest dengue burden worldwide supporting an urgent need for vaccines. For vaccine introduction, evaluation and interpretation it is important to gain a critical understanding of immune memory induced by natural exposure. However, immune memory to dengue remains poorly characterized in this region. METHODS: We enumerated levels of dengue specific memory B cells (MBC), neutralizing (NT) and binding antibodies in healthy adults (n=70) from New Delhi. RESULTS: NT-antibodies, binding antibodies and MBC were detectable in 86%, 86.56% and 81.63% of the subjects respectively. Among the neutralizing positive subjects, 58%, 27%, 5% and 10% neutralized all four, any three, any two and any one dengue serotypes respectively. The presence of the neutralizing antibodies was associated with the presence of the MBC and binding antibodies. However, a massive interindividual variation was observed in the levels of the neutralizing antibodies (range, <1:50-1:30,264), binding antibodies (range, 1:3,000-1:134,000,) as well as the MBC (range=0.006%-5.05%). CONCLUSION: These results indicate that a vast majority of the adults are immune to multiple dengue serotypes and show massive interindividual variation in neutralizing/binding antibodies and MBCs - emphasizing the importance of monitoring multiple parameters of immune memory in order to properly plan, evaluate and interpret dengue vaccines.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , B-Lymphocytes/immunology , Dengue Virus/immunology , Dengue/immunology , Adult , Cross Reactions , Dengue/epidemiology , Female , Humans , India , Male , Serogroup , Young Adult
16.
Clin Infect Dis ; 67(suppl_1): S66-S77, 2018 10 30.
Article in English | MEDLINE | ID: mdl-30376091

ABSTRACT

Background: As a risk-mitigation strategy to minimize paralytic polio following withdrawal of Sabin type 2 from the oral poliovirus vaccine in April 2016, a single full dose or 2 fractional doses of inactivated poliovirus vaccine (IPV) are recommended. However, limited knowledge exists on long-term persistence of immune memory following 1- or 2-dose IPV schedules. Methods: We examined induction and maintenance of immune memory following single- vs 2-dose IPV schedules, either full-dose intramuscular or fractional-dose intradermal, in rhesus macaques. Humoral responses, bone marrow-homing antibody-secreting plasma cells, and blood-circulating/lymph node-homing memory B cells were examined longitudinally. Results: A single dose of IPV, either full or fractional, induced binding antibodies and memory B cells in all vaccinated macaques, despite failing to induce neutralizing antibodies (NT Abs) in many of them. However, these memory B cells declined rapidly, reaching below detection in the systemic circulation by 5 months; although a low frequency of memory B cells was detectable in draining lymph nodes of some, but not all, animals. By contrast, a 2-dose vaccination schedule, either full or fractional, efficiently induced NT Abs in all animals along with bone marrow-homing plasma cells and memory B cells. These memory B cells persisted in the systemic circulation for up to 16 months, the maximum duration tested after the second dose of vaccination. Conclusions: Two doses of IPV, regardless of whether fractional or full, are more effective than a single dose for inducing long-lasting memory B cells.


Subject(s)
Antibodies, Neutralizing/immunology , B-Lymphocytes/immunology , Immunization Schedule , Poliomyelitis/immunology , Poliovirus/immunology , Vaccination , Animals , Humans , Macaca mulatta , Models, Animal , Poliomyelitis/prevention & control , Poliomyelitis/virology , Poliovirus Vaccine, Inactivated/administration & dosage , Poliovirus Vaccine, Oral/administration & dosage
17.
J Infect Dis ; 218(9): 1464-1473, 2018 09 22.
Article in English | MEDLINE | ID: mdl-29860306

ABSTRACT

Several co-pathogens that pose threats to the fetus during gestation, including human cytomegalovirus (HCMV), may also contribute to mother-to-child transmission (MTCT) of human immunodeficiency virus type 1 (HIV-1). Within endemic settings, associations between maternal HCMV viral load and increased incidence of MTCT of HIV-1 are documented; however, the mechanisms that promote transmission are poorly characterized. Here we demonstrate that HCMV coinfection enhances susceptibility and viral replication of HIV-1 in placental macrophages (Hofbauer cells) in vitro. Consistent with enhanced viral susceptibility, HCMV exposure upregulates CCR5 and CD80 expression on Hofbauer cells. HCMV also significantly induces type I interferon (IFN), proinflammatory cytokines, and antiviral gene expression. Interestingly, we found that HCMV diminishes type I IFN-mediated phosphorylation of STAT2. Collectively, our data suggest that HCMV-induced activation, local inflammation, and antagonism of type I IFN responses in placental Hofbauer cells promote in utero transmission of HIV-1.


Subject(s)
Cytomegalovirus Infections/virology , Cytomegalovirus/pathogenicity , HIV Infections/transmission , HIV-1/genetics , HIV-1/pathogenicity , Placenta/virology , Virus Replication/genetics , Coinfection/metabolism , Coinfection/virology , Cytokines/metabolism , Cytomegalovirus Infections/metabolism , Female , HIV Infections/metabolism , HIV Infections/virology , Humans , Infectious Disease Transmission, Vertical , Inflammation/metabolism , Inflammation/virology , Macrophages/metabolism , Macrophages/virology , Placenta/metabolism , Pregnancy
18.
Cell Tissue Res ; 369(3): 541-554, 2017 09.
Article in English | MEDLINE | ID: mdl-28550425

ABSTRACT

Invariant natural killer T (iNKT) cells play important roles in antimicrobial defense and immune-regulation. We have previously shown that iNKT cells express certain toll-like receptors (TLR), and that TLR co-stimulation of iNKT cells in the presence of suboptimal concentrations of T cell receptor (TCR) agonists enhances cellular activation. In the present study, we investigated the regulatory effects of CpG oligonucleotides in mouse primary hepatic and splenic iNKT cells and in DN32.D3 iNKT cells. We show that CpG treatment of iNKT cells in the presence of higher concentrations of TCR agonists (α-GalCer or anti-CD3 mAb) results in the up-regulation of TLR9 in iNKT cells with a concurrent reduction in their cellular activation, as assessed by their production of IL-2, IL-4 and IFN-γ compared with controls. CpG-mediated down-regulation of iNKT cell activation has been found to depend, at least in part, on signaling by MyD88, a critical adapter moiety downstream of TLR9 signaling. Mechanistically, iNKT cells treated with CpG in the presence of TCR agonists show inhibition of MAPK signaling as determined by the levels of ERK1/2 and p38 MAPKs. Furthermore, CpG treatment leads to an increased induction of phosphatases, DUSP1 and SHP-1, that seem to impede MAPK and TCR signaling, resulting in the negative regulation of iNKT cell activation. Our findings therefore suggest a novel regulatory role for CpG in iNKT cells in the mediation of a negative feedback mechanism to control overactive iNKT cell responses and hence to avoid undesirable excessive immunopathology.


Subject(s)
Lymphocyte Activation/drug effects , Natural Killer T-Cells/immunology , Oligodeoxyribonucleotides/pharmacology , Animals , Antibodies, Monoclonal/pharmacology , CD3 Complex/metabolism , Down-Regulation/drug effects , Galactosylceramides/pharmacology , Interferon-gamma/metabolism , MAP Kinase Signaling System/drug effects , Mice, Inbred C57BL , Myeloid Differentiation Factor 88/metabolism , Natural Killer T-Cells/drug effects , Phosphoprotein Phosphatases/metabolism , Receptors, Antigen, T-Cell/metabolism , Toll-Like Receptor 9/genetics , Toll-Like Receptor 9/metabolism , Transcription, Genetic/drug effects , Up-Regulation/drug effects
19.
J Virol ; 90(24): 11259-11278, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27707928

ABSTRACT

Epidemiological studies suggest that India has the largest number of dengue virus infection cases worldwide. However, there is minimal information about the immunological responses in these patients. CD8 T cells are important in dengue, because they have been implicated in both protection and immunopathology. Here, we provide a detailed analysis of HLA-DR+ CD38+ and HLA-DR- CD38+ effector CD8 T cell subsets in dengue patients from India and Thailand. Both CD8 T cell subsets expanded and expressed markers indicative of antigen-driven proliferation, tissue homing, and cytotoxic effector functions, with the HLA-DR+ CD38+ subset being the most striking in these effector qualities. The breadth of the dengue-specific CD8 T cell response was diverse, with NS3-specific cells being the most dominant. Interestingly, only a small fraction of these activated effector CD8 T cells produced gamma interferon (IFN-γ) when stimulated with dengue virus peptide pools. Transcriptomics revealed downregulation of key molecules involved in T cell receptor (TCR) signaling. Consistent with this, the majority of these CD8 T cells remained IFN-γ unresponsive even after TCR-dependent polyclonal stimulation (anti-CD3 plus anti-CD28) but produced IFN-γ by TCR-independent polyclonal stimulation (phorbol 12-myristate 13-acetate [PMA] plus ionomycin). Thus, the vast majority of these proliferating, highly differentiated effector CD8 T cells probably acquire TCR refractoriness at the time the patient is experiencing febrile illness that leads to IFN-γ unresponsiveness. Our studies open novel avenues for understanding the mechanisms that fine-tune the balance between CD8 T cell-mediated protective versus pathological effects in dengue. IMPORTANCE: Dengue is becoming a global public health concern. Although CD8 T cells have been implicated both in protection and in the cytokine-mediated immunopathology of dengue, how the balance is maintained between these opposing functions remains unknown. We comprehensively characterized CD8 T cell subsets in dengue patients from India and Thailand and show that these cells expand massively and express phenotypes indicative of overwhelming antigenic stimulus and tissue homing/cytotoxic-effector functions but that a vast majority of them fail to produce IFN-γ in vitro Interestingly, the cells were fully capable of producing the cytokine when stimulated in a T cell receptor (TCR)-independent manner but failed to do so in TCR-dependent stimulation. These results, together with transcriptomics, revealed that the vast majority of these CD8 T cells from dengue patients become cytokine unresponsive due to TCR signaling insufficiencies. These observations open novel avenues for understanding the mechanisms that fine-tune the balance between CD8-mediated protective versus pathological effects.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cytotoxicity, Immunologic , Dengue Virus/drug effects , T-Lymphocyte Subsets/immunology , Transcriptome/immunology , ADP-ribosyl Cyclase 1/genetics , ADP-ribosyl Cyclase 1/immunology , Adolescent , Antibodies/pharmacology , CD28 Antigens/antagonists & inhibitors , CD28 Antigens/genetics , CD28 Antigens/immunology , CD3 Complex/genetics , CD3 Complex/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/virology , Cell Proliferation/drug effects , Child , Child, Preschool , Dengue Virus/genetics , Dengue Virus/growth & development , Dengue Virus/metabolism , Female , Gene Expression Regulation , HLA-DR Antigens/genetics , HLA-DR Antigens/immunology , Humans , Immunity, Cellular , India , Infant , Interferon-gamma/genetics , Interferon-gamma/immunology , Ionomycin/pharmacology , Male , Membrane Glycoproteins/genetics , Membrane Glycoproteins/immunology , Primary Cell Culture , RNA Helicases/genetics , RNA Helicases/immunology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Serine Endopeptidases/genetics , Serine Endopeptidases/immunology , Signal Transduction , T-Lymphocyte Subsets/drug effects , T-Lymphocyte Subsets/virology , Tetradecanoylphorbol Acetate/pharmacology , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/immunology
20.
Tuberculosis (Edinb) ; 95(6): 713-721, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26277695

ABSTRACT

We compared T cell recognition of 59 prevalently recognized Mycobacterium tuberculosis (MTB) antigens in individuals latently infected with MTB (LTBI), and uninfected individuals with previous BCG vaccination, from nine locations and populations with different HLA distribution, MTB exposure rates, and standards of TB care. This comparison revealed similar response magnitudes in diverse LTBI and BCG-vaccinated cohorts and significant correlation between responses in LTBIs from the USA and other locations. Many antigens were uniformly recognized, suggesting suitability for inclusion in vaccines targeting diverse populations. Several antigens were similarly immunodominant in LTBI and BCG cohorts, suggesting applicability for vaccines aimed at boosting BCG responses. The panel of MTB antigens will be valuable for characterizing MTB-specific CD4 T cell responses irrespective of ethnicity, infecting MTB strains and BCG vaccination status. Our results illustrate how a comparative analysis can provide insight into the relative immunogenicity of existing and novel vaccine candidates in LTBIs.


Subject(s)
Antigens, Bacterial/immunology , CD4-Positive T-Lymphocytes/immunology , Latent Tuberculosis/immunology , Mycobacterium tuberculosis/immunology , Adolescent , Adult , Aged , BCG Vaccine/immunology , Brazil/epidemiology , CD4-Positive T-Lymphocytes/microbiology , Child , Europe/epidemiology , Female , Host-Pathogen Interactions , Humans , India/epidemiology , Latent Tuberculosis/diagnosis , Latent Tuberculosis/epidemiology , Latent Tuberculosis/prevention & control , Male , Middle Aged , South Africa/epidemiology , United States/epidemiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...